
An algorithm to prune the area-preserving Hénon map

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 10521

(http://iopscience.iop.org/0305-4470/37/44/005)

Download details:

IP Address: 171.66.16.64

The article was downloaded on 02/06/2010 at 19:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/44
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 10521–10543 PII: S0305-4470(04)78946-5

An algorithm to prune the area-preserving Hénon map
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Abstract
An explicit algorithm to provide the pruning front for the area-preserving
Hénon map is presented. The procedure terminates within finitely many steps
when the map has hyperbolic structure. The only information required to
specify the pruning front is a bifurcation diagram of homoclinic orbits, and it
is obtained by tracking orbits from the anti-integrable limit. The pruned region
thus determined is used to construct the Markov partition of the map, and the
topological entropy is evaluated as an application.

PACS numbers: 05.45.−a, 05.45.Ac

1. Introduction

A critical ingredient in the description of chaotic dynamics is the topology of the nonwandering
set. The kneading theory of Milnor and Thurston provides us with a precise recipe to specify all
topological natures of a family of unimodal maps [1]. The kneading sequence, which is defined
as the itinerary of the critical point, gives a border between admissible and nonadmissible orbits
in appropriate symbolic representation. In contrast to one-dimensional maps, it is no longer
valid, except for quasi one-dimensional situations [2], to carry out an analogous programme
for more than one-dimensional maps due to the lack of critical points. We have to find an
alternative way to capture topological aspects of higher dimensional maps.

The idea of a pruning front has been proposed as a natural extension of the kneading theory;
it gives an analogous border in the two-dimensional symbol plane, which also determines
admissible and nonadmissible orbits [3, 4]. To explain the idea, assume a certain once-
folding map with a complete horseshoe and then prepare the two-dimensional symbol plane,
which is shown in figure 1(a). Each point of the symbol plane corresponds to a point on the
nonwandering set, and has a doubly infinite symbolic representation. As the system parameter
is varied, as shown in figure 1(b), a complete horseshoe is destroyed and a certain set of points
in the symbol plane may lose the corresponding orbits in the dynamics. Some regions in the
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Figure 1. Examples of horseshoes for the area-preserving Hénon map and the symbol planes.
(a) Complete horseshoe. (b) Incomplete horseshoe and the corresponding pruned regions shown
as black and grey blocks.

symbol plane are pruned in this way, and the border, which divides the symbol plane into
admissible and nonadmissible regions, is called the pruning front. Clearly, the pruning front
was introduced to play a similar role to a critical point in the kneading theory.

The pruning front conjecture is concerned with a prediction that all forbidden orbits
are specified solely by the pruning front and that there are no other independent pruning
mechanisms. Although this has not been rigorously established yet, its validity was checked
numerically [3, 5]. It was shown afterwards that the proposed programme is indeed realizable
[6]. More precisely, the author of [6] gave a mathematical formulation of the problem and an
explicit representation of the pruning front for the Lozi map [7].

Generic two-dimensional maps such as the Hénon map [8], which is classified as the
simplest polynomial automorphism having non-trivial dynamics [9], are also to be studied in
a similar manner, but a concrete recipe as given for the Lozi map has not been successfully
presented yet. There is evidence implying that constructing a symbolic representation of
the area-preserving Hénon map would be difficult in general [10]. On the other hand, a
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mathematical definition of pruning fronts and the pruning theorem based on it have been
presented [11, 12]. They also provided an algorithm which enables us to have a maximal
pruning of the horseshoe for each given orbit, together with a computer code to realize it [13].

The purpose of our work is to give an explicit algorithm to compute the pruning front for
the area-preserving Hénon map

Ha,b :

(
x

y

)
→

(
a + by − x2

x

)
, (1)

where |b| = 1. It provides the pruned region for a given parameter value at which
the map has hyperbolic structure. So it differs from the algorithm presented in [13], in
which for a given orbit the maximal pruned region is obtained. As explained in section 4,
we use the term hyperbolicity in a little restricted sense: the situation where the stable
manifold accumulates to a segment of the unstable manifold will be excluded. Since we
concentrate here on the case b = −1, we will drop the subscript b and denote the map by Ha

hereafter.
Our work is motivated by numerical finding, together with pieces of convincing evidence,

that even in the non-horseshoe parameter region there exist a lot of, or presumably infinitely
many, sub-intervals in which the Hénon map has hyperbolic structure [14]. Hyperbolicity
of dynamics implies a Markov shift, and the authors actually constructed it in a heuristic
manner [14].

It should be noted that the pruned region cannot be determined uniquely because, by
definition, forward and backward iterations of some pruned region yield other pruned regions.
So it may have redundancy unless additional conditions are specified. The primary pruned
region has been proposed to avoid such ambiguity [3, 4]. Here, we define the primary pruned
region as a region D satisfying the following properties:

• An orbit is admissible if and only if all of its forward and backward images lie outside D.
• The boundary of D is monotone in each half of the symbol plane, and is symmetric with

respect to the vertical centre line.

Otherwise stated, we fix our pruned region by specifying the second condition. In figure 1(b),
we present an example of the primary pruned region (shown as a black one) for the area-
preserving Hénon map obtained by our algorithm.

Several attempts have been made to give the generating partition of the Hénon map by
introducing the primary homoclinic tangencies [2, 15–19]. We do not intend to construct
the generating partition. Instead, we assume that every homoclinic orbit keeps its own code,
which is assigned in the anti-integrable limit, i.e. a → ∞, until it bifurcates. What we will
do is just draw the pruning front in the symbol plane under the assumption that the system
possesses hyperbolic structure.

Crucial information we have to keep in advance is a bifurcation diagram of homoclinic
orbits on a certain fundamental segment of the stable (or unstable) manifold. An important
fact is that all combinatorial data are contained in it. Such a diagram is obtained by applying a
continuation method proposed by Sterling et al [20, 21], which we now briefly describe. They
use an approximation of a homoclinic orbit by a sequence of periodic orbits which approaches
it as the period increases. Rewriting (1) as a second-order difference equation and changing
its variables as z = εx and ε = a−1/2 give

ε(zj+1 − bzj−1) + zj
2 − 1 = 0. (2)

We denote a period n orbit of (2) by z(ε). At the anti-integrable limit ε → 0, the map
reduces to zj

2 = 1. Therefore an orbit is an arbitrary sequence of ±1, which we denote
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by s. Continuation of z(ε) is to calculate smooth curves in R
n × R satisfying the following

conditions:

G(z, ε) = 0 and z(0) = s,

where the j th component of G is the left-hand side of (2). Each curve extends to some
parameter value at which the orbit bifurcates, and returns to the limit.

The continuation method is based on the assumption that all orbits of the map are
continuously connected to the limit, a → ∞. In other words, it is assumed that there are no
isolated ‘bubbles’ in the bifurcation diagram. In the area-preserving case, this assumption is
quite reasonable. According to Sterling et al [21, 22], even though there are exceptional orbits
breaking it, the number of such orbits of low period is very small. On the other hand in the
dissipative case, the map generically creates orbits when the parameter a decreases, and the
topological entropy is not necessarily monotone [23]. Note that our algorithm presented in
this paper cannot control such bubbles. This is a serious obstacle to apply the algorithm to
dissipative maps.

The paper is organized as follows. After some preliminaries in section 2, we give our
algorithm explicitly in section 3. In section 4, justification of our algorithm is presented. Then
in section 5, we show several examples of pruned regions. Especially, detailed procedures are
traced in one of those examples. In section 6, we give how the pruned region thus constructed
can be converted into a Markov partition and the corresponding structure matrix, which allows
us to compute the topological entropy of the map. Finally in section 7, we summarize the
paper and discuss some open problems.

2. Preliminaries

In this section, we introduce notation and terminology for subsequent arguments and present
some basic propositions employed to ensure our algorithm.

2.1. Symbolic dynamics

The area-preserving Hénon map Ha is conjugate to the horseshoe map if a is sufficiently
large [24]. However, at a certain parameter value, which was numerically evaluated as
af = 5.699 . . . [25], the first homoclinic bifurcation between the innermost stable and the
outermost unstable manifolds happens. This event is called the first tangency, and a recent
work using the theory of complex dynamics rigorously proved that the Hénon map keeps the
horseshoe structure until the first tangency point [26].

In the horseshoe region, an orbit in the nonwandering set � corresponds one-to-one to a
doubly infinite sequence in the shift space �2 = {0, 1}z. The dynamics on � is represented
by the shift map, σ : � → �, defined as σ(. . . s−1 · s0s1 . . .) = (. . . s−1s0 · s1 . . .), where
‘·’ denotes the current time of the orbit. A periodic orbit of the original map corresponds to
a periodic symbol sequence, (s0s1 . . . sn−1)

∞ = (. . . sn−1 · s0s1 . . . sn−1s0 . . .), and so the two
fixed points of the map are (0)∞ and (1)∞. An orbit homoclinic to (0)∞ is then expressed as
a symbol sequence of the form (0∞1s−t . . . s−1 · s0 . . . sh−110∞).

For a symbol sequence s = (. . . s−2s−1 · s0s1s2 . . .), we call s+ := s0s1s2 . . . its head and
s− := . . . s−2s−1 its tail, and denote it in shorthand by s = (s− · s+). The nonwandering
set � can be identified with a unit square, which is used as the symbol plane (see figure 2).
There is ambiguity because every dyadic rational point in the symbol plane corresponds to
four homoclinic points. Therefore, we will sometimes use the trellis of the stable and unstable
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Figure 2. (a) Trellis of the stable and unstable manifolds. Two thick lines indicate the fundamental
segments. (b) The symbol plane �2 = {0, 1}z. Four homoclinic points s1, s2, s3 and s4 in
(a) correspond to a single point s in (b).

manifolds, denoted by Ws and Wu respectively, to avoid confusions. Using the unimodal
ordering [27], we define the ordering of heads and tails as

· e0 . . . ≺ · e1 . . .

· o0 . . . � · o1 . . .

. . . 0e · ≺ . . . 1e ·

. . . 0o · � . . . 1o ·,
(3)

where the number of 1s in e (resp. o) is even (resp. odd).

2.2. Homoclinic orbits

Following the discussion developed in [21], we here focus on homoclinic orbits of the outer
hyperbolic fixed point p. Even if we choose alternative fixed points or periodic points instead
of p, the following argument holds in a similar way.

We denote a closed segment of Wu with endpoints q and r by Wu[q, r], and an open
segment by Wu(q, r). The two segments, U := Wu[q, qs] and S := Ws[q, qu] in figure 2,
are called the fundamental segments [21, 28]. Note that every homoclinic orbit has exactly
one point on a segment from qu to qs = Ha(qu), and that there are no homoclinic points on
Wu(qu, q).

The homoclinic orbits (except for q, qs and qu) on the fundamental segments can be
expressed in the form:

(0∞1 · s0s1 . . . sT −110∞) on U

(0∞1s0s1 . . . sT −1 · 10∞) on S.

In these sequences, T is called the transition time of the orbit [21], because this is the number
of iterations required for a point on U to reach S. We define the transition time of q and
qs = Ha(qu) in figure 2 as 0.

As mentioned in the introduction, even after the first tangency, we assume that every
homoclinic orbit keeps its own horseshoe code. An orbit undergoing a pitchfork bifurcation
needs careful consideration. We here adopt a rule, which is slightly different from the one
given by Sterling et al [21], to assign the codes to homoclinic orbits involved in a pitchfork



10526 R Hagiwara and A Shudo

a

t
s
s
t

t

a1a2

^

^

W
s

U

(a)

(b)

ŝ
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Figure 3. Pitchfork bifurcation followed by a saddle-node bifurcation. (a) Three points s, ŝ and
t degenerate into a single point t at a = a1, and then it collides with t̂ at a = a2. Since s and
ŝ are symmetric with respect to the vertical centre line, t survives after they degenerate. (b) The
bifurcation diagram of (a).

bifurcation: first iterate three homoclinic points on U undergoing a pitchfork bifurcation so
that the symbol sequences of the shifted points coincide in the tail part and that the discrepancy
occurs at the first digit of the head part. In such a configuration, the two of them are necessarily
symmetric with respect to the vertical centre line. In figure 3, the points s and ŝ represent the
symmetric pair. We assign the symbol sequence owned by the other point t to the point that
survives after the bifurcation. In the case of an asymmetric-type pitchfork bifurcation [21] or
more higher order bifurcations, we can adopt a similar rule.

2.3. Pruned pairs

For a homoclinic point s = (
0∞1s−Tt

. . . s−1 · s0 . . . sTh−110∞)
, we introduce the following

notation

Nu(s) := (
0∞1s−Tt

. . . s−1 · s0 . . . sTh−2ŝTh−110∞)
Ns(s) := (

0∞1ŝ−Tt
s−Tt +1 . . . s−1 · s0 . . . sTh−110∞)

,
(4)

where ŝj = 1 − sj . We show an example in figure 2, in which s2 = Nu(s1) and s3 = Ns(s1).
The symbol N stands for ‘neighbour’, so if both s and Nu(s) (resp. Ns(s)) exist (i.e. are not
pruned yet), they are neighbouring homoclinic points on Wu (resp. Ws). That is, there are no
other homoclinic points on either Wu(s, Nu(s)) or Ws(s, Ns(s)).

Similarly, for a homoclinic point s = (
0∞1s−Tt

. . . s−1 · s0 . . . sTh−110∞)
, we introduce

the notation

Pu(h, s) := (
0∞1s−Tt

. . . s−1 · s0 . . . sh−1ŝh0∞)
(h � Th)

Ps(t, s) := (
0∞ŝ−t−1s−t . . . s−1 · s0 . . . sTh−110∞)

(t � Tt ),
(5)

where sTh
= s−Tt−1 = 1 and sj = 0 for all j � −Tt − 2, Th + 1 � j . Roughly speaking, as

shown in figure 4, s and Pu(h, s) are the endpoints of a segment of H−h
a (R) ∩ Wu, where R

is the whole quadrilateral bounded by Wu and Ws . The larger the subscripts h and t become,
the larger the transition times of Pu(h, s) and Ps(t, s) become and the closer they approach s.
Particularly on U, h is equal to the transition time of Pu(h, s) except for the case h = Th (see
(5)). Similarly on S, t is the transition time of Ps(t, s) except for t = Tt .
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Figure 5. (a) Homoclinic points on U up to transition time 2 at a certain parameter value a after
the horseshoe structure is destroyed. Here, the two points s and t have already disappeared. They
do not have pruned pairs of length 2 and less. (b) Homoclinic points up to transition time 3 at
the same a as (a). Now both s and t have pruned pairs of length 3. Circles and crosses stand for
existing points and missing points, respectively.

If both s and Pu(h, s) (resp. Ps(t, s)) are pruned at a certain a, we say that they are the
pruned pair of length h (resp. t) on the unstable (resp. stable) manifold. We demonstrate this
aspect in figure 5. Note that a pair of homoclinic points bifurcating with each other is not a
pruned pair. The reason is given by the following propositions.
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Figure 6. (a) Part of pruned horseshoe. (b) The corresponding pruned region drawn on the
complete horseshoe. It is composed of the blocks D1, D̂1,D2 and D̂2, and their vertices are shown
as crosses.

Proposition 1 (forcing relation [21]). Before two homoclinic points s and t bifurcate, all
homoclinic points in Wu[s, t] ∪Ws[s, t] must have disappeared and the two must be neighbours
on both Wu and Ws .

Proposition 2 [21]. If two homoclinic orbits bifurcate, their transition time must be equal.
(Suppose that they are adjacent to each other on U. If their transition time is different, they
are not adjacent to each other on S, which means that they cannot bifurcate.)

By definition, s and Pu(h, s) always have different transition times. Therefore by proposition 2,
they never bifurcate with each other.

We say that a homoclinic point s undergoes a primary bifurcation if it bifurcates with
ŝ. The notation ŝ stands for the point symmetric to s with respect to the vertical centre line.
That is, ŝ := (. . . s−1 · ŝ0s1 . . .). If s and ŝ collide in a saddle-node bifurcation, it is a primary
bifurcation. Suppose a pitchfork bifurcation occurs among three points s, ŝ and t at a = a1

and the remaining point t collides with t̂ at a = a2 as shown in figure 3. Then we consider
that s and ŝ undergo a primary bifurcation at a = a1, while t and t̂ do so at a = a2.

3. A pruning algorithm

In this section we provide our pruning algorithm. The main stream is given in the next
subsection, and the subroutines called in it are in the following two subsections.

3.1. Main routine

For a given parameter a at which the area-preserving Hénon map Ha is hyperbolic, the
following algorithm gives the primary pruned region D for Ha . As shown in figure 6, D is
given as a union of blocks denoted by Dj whose vertices are homoclinic points. Steps 2
and 3, which will be given below, provide the vertices of those blocks. Applying the
continuation method, we judge whether or not a given homoclinic point is pruned, and make
use of this information in the procedure. All homoclinic points which have undergone primary
bifurcations at parameter values larger than a are contained in D.

1. Setting the initial conditions.
1.1. Let the two homoclinic points on U undergoing the first bifurcation be a1 and â1. That

is, a1 ← (0∞1 · 010∞) and â1 ← (0∞1 · 110∞), where arrows stand for substitution.
1.2. Let the number of blocks j be 1.
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pruned pair

Figure 7. Example of the procedure to determine the depth of a block. (a) At t = 0, suppose that
top = a1 is missing and Ps(0, top) = b0 is existing. So add 1 to t and start again from a1. (b) At
t = 1, suppose further Ps(1, top) is missing. So let Ps(1, top) be bot and update top as Ns(bot).
If Ns(bot) is an existing point as shown in the figure, we should choose this bot as b1 and finish
the subroutine.

2. Finding the depth of the block Dj .
Check whether or not homoclinic points are already pruned at a, starting from aj and âj ,
respectively, and scanning in the downward direction of the symbol plane. Here we apply
the continuation method for this checking procedure. As presented in section 3.2, we can
find the two points bj and b̂j such that they have undergone a primary bifurcation and are
the most distant points from aj and âj (see figure 6).

3. Finding the width of the block Dj .
Examine pruned homoclinic points similarly, starting from bj and b̂j , respectively, in the
horizontal direction of the symbol plane. We again apply the continuation method. As
a consequence, we can find the two points cj and ĉj such that they have undergone a
primary bifurcation. The details are given in section 3.3.

4. Let the rectangles three of whose vertices are given by aj , bj , cj and âj , b̂j , ĉj be Dj and
D̂j , respectively. That is,

Dj ← {s ∈ �2 | (bj )− 	 s− 	 (aj )−, (cj )+ 	 s+ 	 (bj )+}
D̂j ← {s ∈ �2 | (bj )− 	 s− 	 (aj )−, (b̂j )+ 	 s+ 	 (ĉj )+}.

These blocks constitute the primary pruned region D.
5. The fourth vertex of Dj is given as dj ← (0∞1 · (cj )+).

5.1. Let the left neighbour of dj be aj+1, i.e. aj+1 ← Nu(dj ).
5.2. If both aj+1 and âj+1 are missing, then add 1 to j and return to step 2.

If either aj+1 or âj+1 (or both) exist, then the loop terminates, because there are no more
points undergoing primary bifurcations.

6. Let the union of all the blocks be D, i.e. D ← ⋃j

i=1(Di ∪ D̂i). (END)

3.2. Subroutine 1

Subroutine 1 determines the depth of Dj . It is executed at step 2 of the main routine and
determines bj which is one of the vertices of Dj . Figures 7 and 8 will be helpful for the
readers.

a. (Only when j = 1.)

a.1. Set t ← 0, which is the initial condition for Ps .
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Figure 8. Illustration of step e of subroutine 1. (a) If top exists, the homoclinic points below top
(shaded segment in the figure) do not undergo primary bifurcations. (b) If top− ≺ (bj−1)− (in
this figure j = 4), at least one homoclinic point exists in the shaded area. Accordingly, in both
cases the homoclinic points below top are not pruned by a primary bifurcation.

a.2. Set b0 ← Ps(0, a1) = (0∞ ·010∞). This point is located at the bottom of the symbol
plane and always exists. (If not, it implies that the fundamental segments are missing,
because Ha(b0) = qu is one of the endpoints of S.)

b. Let top ← aj . This is a missing point since we now assume the situation after the first
tangency.

c. Find a pruned pair of top on the stable manifold.

c.1. If either Ps(t, top) or P̂s(t, top) exists, then add 1 to t and return to step b. By
observation 3 mentioned in the next section, this loop terminates if the map Ha has
hyperbolic structure.

c.2. Let bot ← Ps(t, top). These bot and top are the pruned pair of length t.

d. Let top ← Ns(bot).
e. If either top exists or top− ≺ (bj−1)−, then the vertex is determined as bj ← bot.

Otherwise return to step c. (END)

The latest t is used as the initial value for constructing the next block Dj+1. The reason
why the condition at step e terminates the routine is as follows.
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First, suppose that a newly chosen top exists (see figure 8(a)), then no point in the shaded
interval {s|0∞· 	 s− 	 top−, s+ = top+} has undergone a primary bifurcation. This is
because the existence of top on Ws(s, ŝ) contradicts proposition 1. As mentioned before,
D is constructed so that it contains all the missing points which have undergone primary
bifurcations. Therefore this interval need not be contained in D.

Second, suppose that the condition top− ≺ (bj−1)−, which makes the sequence
(b1)−, (b2)−, . . . increase monotonically, holds, and let the existing point having the largest
subscript (i.e. the largest tail) among Ns(bj−1), Ns(bj−2), . . . , Ns(b1) be Ns(bk). Then as
shown in figure 8(b), in step e, top is chosen to satisfy top− = (Ns(bk))−. Therefore
if there is a missing point s below top on the vertical line including aj , the shaded area
{t|s− 	 t− 	 s−, s+ 	 t+ 	 ŝ+} contains Ns(bk). Thus by proposition 1, s is not pruned by a
primary bifurcation.

3.3. Subroutine 2

Subroutine 2 determines the width of Dj . It is executed at step 3 of the main routine and
determines cj which is one of the vertices of Dj .

a. (Only when j = 1.)
Set h ← 2, which is the initial condition for Ph. This makes Pu(2, NuPu(2, b1)) a point
on the left border of the symbol plane.

b. Add 1 to h until either Pu(h,NuPu(h, bj )) or Pu(h, bj ) becomes a point pruned by a
primary bifurcation.

c. Let the point determined at step b be cj . (END)

The latest h is used as the initial value for constructing the next block Dj+1. As shown
in figure 9, for some h, Pu(h,NuPu(h, bj )) has undergone a primary bifurcation even though
Pu(h, bj ) has not. Therefore, for each h, it is necessary to examine these two points as a
candidate for cj .

When cj is determined, it turns out that both bj and cj have the pruned pairs of length
h on the unstable manifold. In particular, if cj = Pu(h, bj ), then bj and cj themselves are
a pruned pair of each other. Due to hyperbolicity, this loop terminates within finitely many
steps as well as the one in subroutine 1.

In the loops of the subroutines, with the increment of h (resp. t), the distance between
homoclinic points s and Pu(h, s) (resp. Ps(t, s)) is reduced in half. This loop is an example
of procedures which pick up the vertices of blocks from infinitely many homoclinic points.
One may find another procedure, for example, by which homoclinic points are examined
equidistantly. So there exist several subroutines equivalent to ours.

4. Validity of the algorithm

In this section we first show that D constructed in this way satisfies the definition of a primary
pruned region. Then we give the reason why our algorithm terminates within finitely many
steps.

First, as a direct consequence of the procedure itself, the boundary of D is monotone and
symmetric. Second, all orbits lying inside D are nonadmissible, because Dj is contained in
the region encircled by Wu[cj , ĉj ] ∪Ws[cj , ĉj ], which disappears when cj and ĉj degenerate.
Thus by proposition 1, all orbits lying on Dj also disappear before cj and ĉj do. Finally, we
show that all forbidden orbits lie on D. In order to prove this fact, assume that a homoclinic
point s outside D is pruned. Let s′ be a point bifurcating and disappearing with s according
to our definition mentioned in section 2.2. Then both sequences differ in only one symbol,
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Pu(h,NuPu(h,bj))

U

W
s

Figure 9. Examples of possible bifurcations. The numbers represent the order of bifurcations.
In (a) and (c), Pu(h, bj ) undergoes a primary bifurcation. On the other hand, in (b) and
(d), not Pu(h, bj ) but Pu(h, NuPu(h, bj )) does. Note that Pu(h, bj ) and P̂u(h, bj ) have different
numbers.

because they are symmetric with respect to the line which separates either Wu(s, s′) or Ws(s, s′)
just before the bifurcation. Iterate them so that the symbols next to the decimal point differ
from each other. Then they are symmetric with respect to the vertical centre line. That is,
these orbits have disappeared as a result of a primary bifurcation. Since D contains all missing
points which have undergone primary bifurcations, we can say that the orbit of s lies on D.

Now we show the reason why the algorithm terminates within finitely many steps. The
following observation is essential to this end.

Observation 3. If the map Ha has neither tangential points between the stable and unstable
manifolds nor points on U to which the stable manifold accumulates, then all pruned
homoclinic points have pruned pairs of some length on both of the manifolds. In other
words, for all pruned points s, there exist h and t such that Pu(h, s) and Ps(t, s) are also
pruned.

We can make a similar statement on S. Here we explain why this observation is valid. For
simplicity, let us consider pruned pairs on U. Suppose that on U there is a missing point which
does not have any pruned pairs, i.e. a pruned point s such that Pu(h, s) exists for all h.

As shown in figure 10(a), either the two points sT and tT or the others qT := Pu(T , sT )

and rT := Pu(T , tT ) have transition time T on U. Note that the tails of these four points are
0∞1·. Let us assume that sT and tT collided with each other and disappeared as a decreased,
and that neither sT nor tT has the pruned pair of length T, which is schematically shown in
figure 10(b). Furthermore, suppose that they do not have pruned pairs of length less than T.
When we consider the points up to transition time T + 1, a possible configuration is shown in
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Figure 10. (a) Part of the manifolds at sufficiently large a. (b) Two points sT and tT in
(a) disappear with decreasing a. (c), (d), (e) These are possible configurations when the points up
to transition time T + 1 are considered. In the cases of (c) and (d), there appear four and two new
points, respectively. On the other hand, in the case of (e), there are no new homoclinic points in
Wu(qT , rT ).

either figure 10(c), (d) or (e). However, if there is a missing point which does not have any
pruned pairs on Wu(qT , rT ), either case (c) or (e) is the only one realizable. In the case of (c),
new pruned points qT +1 := Pu(T + 1, sT ) and rT +1 := Pu(T + 1, tT ) are found. Thus sT and
qT +1 are the pruned pairs of length T + 1. So are tT and rT +1. However, at the same time two
other pruned points sT +1 := Nu(qT +1) and tT +1 := Nu(rT +1) are also found; they do not have
the pruned pairs of length T + 1 and less. In the case of (e), the segment Wu(qT , rT ) is the
same as that in (b).

In other words, no matter how large a transition time we consider, only either the case
(c) or (e) is realizable. For any T, in Wu(qT , rT ), there are missing points which do not have
the pruned pairs of length T and less. If the region encircled by Wu(q∞, r∞) ∪ Ws(q∞, r∞)

has positive measure in the limit of T → ∞, it contradicts the fact that there is no region
in limn→∞ H−n

a (R) having a finite-length boundary and positive measure. Thus, the case (c)
must be repeated infinitely many times; it implies that the length of Wu(qT , rT ) shrinks to
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Figure 11. Part of the stable and unstable manifolds at a = 4.58.

zero. As a result, q∞ and r∞ must degenerate into either a tangential point or a point to which
the stable manifold accumulates. This contradicts the assumption.

5. Examples

In this section, we trace our procedure to generate the primary pruned region D for a
parameter interval including a = 4.58. Figures 11 and 12 show the stable and unstable
manifolds at a = 4.58 and its schematic picture, respectively. The corresponding primary
pruned region obtained via our algorithm is given as a union of blocks Dj and D̂j in
figure 12.

The first step of the main routine is to put a1 = (0∞1 · 010∞). The depth of D1 is
determined in subroutine 1. Each step is taken in the following way (see figure 13). For
t = 0, since the parameter value under consideration is one after the first tangency, top ← a1

is missing (a cross in the figure). As step c, let Ps(0, top) = (0∞ · 010∞) be taken, and check
whether it is pruned or not by applying the continuation method. In this case we find that it is an
existing point (a circle in the figure). So letting t = 1, we find that Ps(1, top) = (0∞11 · 010∞)

also exists. Then we move to the case t = 2. Both Ps(2, top) = (0∞101·010∞) and P̂s(2, top)

are missing, thus let bot be Ps(2, top) and update top as Ns(bot) = (0∞111 · 010∞). Since
the newly chosen top is missing and top− = 0∞111 · � 0∞ · = (b0)−, the condition of
step e is not satisfied. Therefore return to step c. Then taking Ps(2, top) = (0∞11 · 010∞),
we find that this exists. So let t = 3 and start again from step b. In the same way, when
t = 5 and top = (0∞111 · 010∞), both Ps(5, top) = (0∞100111 · 010∞) and P̂s(5, top) are
missing. So let bot be Ps(5, top) and update top as Ns(bot) = (0∞110111 · 010∞). This time
we find that top is an existing point, which means that the loop terminates. Consequently,
b1 ← bot = (0∞100111 · 010∞) and t = 5 are the output of subroutine 1.

Now back to main routine, we next determine the width of D1, which is done in
subroutine 2. Examining from Pu(1, b1) by employing the continuation method, we can
find that Pu(4, b1) has been pruned by a primary bifurcation. So let c1 be Pu(4, b1) =
(0∞100111 · 010010∞) and h = 4. Although infinitely many bifurcations occur in this
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Figure 12. Schematic picture of the stable and unstable manifolds in the region encircled by a
thick curve in figure 11. The solid lines show the manifolds, and the crosses stand for the vertices
of the pruned blocks. The primary pruned region D is

⋃4
i=1(Di ∪ D̂i ). See also the last two

diagrams in figure 16.

process, the crucial information is only a bifurcation diagram of Pu(h, b1) (h = 1, 2, . . .),
which is shown in figure 14. We then get the first two blocks D1 and D̂1 as follows:

D1 = {s | (b1)− 	 s− 	 (a1)−, (c1)+ 	 s+ 	 (b1)+}
= {s | 0∞100111· 	 s− 	 0∞1·, ·010010∞ 	 s+ 	 ·010∞}
= {01 · 0100} ∪ {00111 · 0100}

D̂1 = {01 · 1100} ∪ {00111 · 1100}.

Because both a2 = (0∞1 · 010110∞) and â2 = (0∞1 · 110110∞) are missing, we can
construct the second two blocks D2 and D̂2. Using t = 5 as the initial value, subroutine 1
yields the output b2 = (0∞1001 · 010110∞), while it does not change t. As for the width,
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Figure 13. Procedure of subroutine 1 to obtain b1 at a = 4.58. All points in the figure have the
same head ·010∞. An explanation is given in the text.

a
4.58

Pu(1,b1)

b1

Pu(2,b1)
Pu(3,b1)
Pu(4,b1)

Pu(1,b1)
Pu(2,b1)
Pu(3,b1)
Pu(4,b1)

b1̂

. . .
. . .

primary bifurcations

^
^
^
^

Figure 14. Schematic bifurcation diagram of Pu(h, b1). This information suffices to decide c1, so
we need not examine the entire stable and unstable manifolds. At the left endpoints of the straight
line segments, the homoclinic orbits undergo saddle-node bifurcations with their partners, which
are not shown in this figure.

using h = 4 as the initial value, subroutine 2 gives c2 = (0∞1001 · 01011010∞) and h = 6.
Hence,

D2 = {s | 0∞1001· 	 s− 	 0∞1·, ·01011010∞ 	 s+ 	 ·010110∞}
= {001 · 010110}

D̂2 = {001 · 110110}.
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Figure 15. Stable and unstable manifolds at three parameter values larger than a = 4.58. In
these figures, we use abbreviations Pu and P ′

u for Pu(6, c4) and Pu(6, NuPu(6, c4)), respectively.
(a) All the related homoclinic points b4, b̂4, Pu, P̂u, P

′
u and P̂ ′

u are existing. (b) Although Pu

has disappeared, P̂u still exists, meaning that the type of bifurcation for Pu is not primary.
(c) A pitchfork bifurcation takes place among three points P ′

u, b4 and b̂4. By definition, the
survivor is P ′

u. Then P ′
u and P̂ ′

u undergo a primary bifurcation.
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Table 1. The endpoint parameter values [21] and the forbidden substrings for the same parameter
intervals shown in figure 16. A symbol X denotes both 0 and 1.

Left endpoints Right endpoints Length of intervals Forbidden substrings

5.6319 . . . 5.6776 . . . 0.0457 . . . 0001X1000
5.5649 . . . 5.6087 . . . 0.0438 . . . 0001X1001 001X1000
5.1885 . . . 5.5376 . . . 0.3491 . . . 001X100
4.8431 . . . 4.8679 . . . 0.0248 . . . 001X10101 0001X101001

10101X100 100101X1000
001X1011 001X100
1101X100

4.5593 . . . 4.5956 . . . 0.0363 . . . 001X11100 001X101
00111X100 01X100

Moreover, the following four blocks can be constructed in the same way:

D3 = {001 · 0101X1} D4 = {001 · 01X100}
D̂3 = {001 · 1101X1} D̂4 = {001 · 11X100},

where X = 0, 1. Here both t and h remain unchanged when these blocks are
obtained. It should be noted that c3 = Pu(6, NuPu(6, b3)) = (0∞1001 · 01010110∞) and
c4 = Pu(6, NuPu(6, b4)) = (0∞1001 · 01110010∞). As for c4, note that Pu(6, b4) has
not pruned by a primary bifurcation. As shown in figure 15, some homoclinic points on
Wu(Pu(6, b4), P̂u(6, b4)) such as b4 and b̂4 survive even after Pu(6, b4) disappeared. This
just corresponds to the case given in figure 9(d). A similar argument can be applied to c3.

Finally, since both a5 = (0∞1 · 01110110∞) and â5 = (0∞1 · 11110110∞) are existing,
the main routine terminates here. Consequently, we obtained the primary pruned region
D = ⋃4

i=1(Di ∪ D̂i) which is shown in figure 12.
Figure 16 shows examples of the primary pruned regions for several parameter values.

Near a = 5.40, the area-preserving Hénon map has the longest hyperbolic interval. We refer
to the binary words representing a primary pruned region as the forbidden substrings. For
the upper three intervals, the forbidden substrings coincide with what were obtained by Davis
et al [14], who called them ‘missing blocks’. Table 1 presents a list of forbidden substrings
and the parameter values corresponding to the endpoints of the intervals calculated by Sterling
et al [21].

6. Markov shifts and topological entropy

In the hyperbolic case, the primary pruned region is represented as a finite list of forbidden
substrings. The dynamics of such a system is described by a Markov shift. In this section, we
explain how to construct it.

Suppose that the length of the longest forbidden substrings is n. Then the Markov shift
of a finite type is expressed as the transition between n − 1 symbols. That is,

(
. . . s0 · s1 . . . sn−1 snsn+1sn+2 . . .

)
(
. . . s0s1 · s2 . . . sn sn+1sn+2 . . .

)
(
. . . s0s1s2 · s3 . . . sn+1 sn+2 . . .

)
....
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Figure 16. Stable and unstable manifolds and the pruned regions for the longest five intervals
where the area-preserving Hénon map exhibits hyperbolic structure. The primary pruned regions
are coloured black and their forward and backward images grey. The pruned regions for
a = 5.65, a = 5.59 and a = 5.40 coincide with what Davis et al [14] obtained.
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(6)

For example, the forbidden substrings for a = 5.40, which is in the longest hyperbolic interval
of the area-preserving Hénon map, are 0010100 and 0011100. Due to the absence of these
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Figure 17. Topological entropy for the area-preserving Hénon map as a function of the
parameter a. The resolution of the symbol plane, that is, the length of the forbidden substrings is
fixed as 20.

substrings, the following two types of transitions are forbidden,

. . . · 0 0 1 0 1 0 0 . . . −→ . . . 0 · 0 1 0 1 0 0 . . .

. . . · 0 0 1 1 1 0 0 . . . −→ . . . 0 · 0 1 1 1 0 0 . . . .

Since each block is composed of six symbols, the Markov partition is obtained by dividing
the nonwandering set into 26 pieces according to the symbol entries. The resulting structure
matrix is a 26-dimensional one like (6), which has already been presented by some works
[3, 4]. Every row in the matrix has at most two 1s in its entry, because a block overlaps
the next one except for the last symbol. In general, if the length of the longest forbidden
substrings is n, we have to prepare 2n−1-dimensional structure matrix. The matrices are,
though they have redundancy, automatically constructed once the primary pruned regions are
obtained.

A structure matrix T gives the number of periodic points of the map σ :

#(fixed points of σn) = tr T n (n ∈ N). (7)

For each parameter interval shown in figure 16, we confirmed that the numbers of periodic
points calculated on the basis of structure matrices coincide with those calculated using the
method proposed by Biham and Wenzel [29]. This justifies that what we obtained are proper
Markov partitions.

As an additional application, we calculate the topological entropy for the area-preserving
Hénon map as a function of the parameter a in figure 17. The topological entropy is obtained
as the logarithm of the maximal eigenvalue of the structure matrix.

We limit the maximal length of forbidden strings to 20 and ignore the finer structures of
the primary pruned regions. For non-hyperbolic parameter values, we cope with approximate
structure matrices, because our algorithm may not terminate and does not give precise pruned
regions.

Above a = 5.699 . . . at which the first tangency occurs [21], symbolic dynamics forms the
binary full shift, and the topological entropy is equal to log 2. As shown in figure 17, the entropy
decreases monotonically with the parameter from the first tangency point. Although the plot
well resembles that of the number of periodic orbits [14], we should remark that monotonicity
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is just a result of the assumption of no bubbles, and that our algorithm necessarily yields a
monotonic increase in the pruned region.

Collins presented a method to estimate lower bounds of the topological entropy of planar
diffeomorphisms with homoclinic tangles [30]. Our results coincide with those calculated
using the method of Collins for the hyperbolic parameter intervals shown in figure 16. Even in
the case of non-hyperbolic parameter intervals, we observed that the entropy computed with
our algorithm seems to converge, as we increase the resolution of the symbol plane. However,
there is no guarantee that it gives either a lower or an upper bound of the entropy.

7. Conclusion and discussion

In this paper, we have presented an automatic algorithm to obtain the primary pruned region
for the area-preserving Hénon map. Our prescription makes full use of a bifurcation diagram
of homoclinic orbits on the fundamental segments of the stable (or unstable) manifold. It is
obtained by applying the continuation of orbits from the anti-integrable limit.

Hyperbolicity of the map, which is a crucial assumption for actual construction, ensures
the procedure terminates within finitely many steps. For a non-hyperbolic system, meaning
that the map presents homoclinic tangencies for example, the algorithm will not construct the
exact pruned regions. Even in such a case, we can obtain some blocks and can tell that at least
these blocks are pruned.

Since the idea of pruning was proposed, the monotonicity and symmetry of the pruning
front have always been a matter of discussion. The possibility of anti-monotonic [6] and
asymmetric [12] pruning fronts was mentioned. In this paper, they are consequences of the
construction. However, if two homoclinic orbits with different transition times bifurcate and
disappear, in other words, if there occur bifurcations, which are not assumed in proposition 2,
then our algorithm may not work. This implies the existence of asymmetric pruning fronts,
the importance of which was discussed in [12].

All the combinatrices arising from bifurcations are contained in a bifurcation diagram in
advance. Therefore, what we have done is just converting information of homoclinic orbits
on a one-dimensional fundamental segment to that in the two-dimensional symbol plane, in
which the pruning front is drawn. However, since we have only to check the existence or non-
existence of homoclinic orbits on a fundamental segment, our algorithm is straightforward and
easily implemented. As stressed in the introduction, our present attempt is not to construct the
generating partition, for which several prescriptions have been proposed so far [2, 10, 15–19].
What we have done in this paper is just to draw the pruning front in the symbol plane, not to
draw the border in the configurational (x, y) plane.

A primary pruned region allows one to construct the Markov partition and the structure
matrix related to it. As an immediate outcome of the Markov partition, we have evaluated the
topological entropy of the map. All these are consistent with the preceding results.

Finally, we mention a further application of the proposed algorithm. The topological
entropy may certainly be an important invariant quantity for dynamical systems, but it does
not specify all the topological characters. For example, as indicated in the previous section, our
transition matrices have much redundancy. In other words, the Markov partition thus obtained
is not a unique partition, but there are infinitely many other possibilities. So we may naturally
ask to what extent we can reduce the number of partitions, that is, the minimum number of the
partitions, which would provide different topological characterization of a dynamical system.
This question is almost equivalent to asking the minimum number of states of the automaton
which generates symbol sequences of a given map, and also the grammatical complexity
introduced in the context of the formal language [31]. The grammatical complexity for the
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Hénon and the Lozi maps is also indeed computed systematically as a function of the system
parameter in our subsequent paper [32].
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